sum
Calculate the sum of all numbers in an array.
Basic Usage
typescript
import { sum } from 'radash'
const numbers = [1, 2, 3, 4, 5]
const total = sum(numbers)
// 15
Syntax
typescript
function sum(array: readonly number[]): number
Parameters
array
(readonly number[]): The array of numbers to sum
Return Value
Returns the sum of all numbers in the array. If the array is empty, returns 0.
Examples
Basic Summation
typescript
import { sum } from 'radash'
console.log(sum([1, 2, 3, 4, 5])) // 15
console.log(sum([10, 20, 30])) // 60
console.log(sum([-1, -2, -3])) // -6
console.log(sum([0, 0, 0])) // 0
Handle Empty Arrays
typescript
import { sum } from 'radash'
console.log(sum([])) // 0
console.log(sum([0])) // 0
Handle Decimals
typescript
import { sum } from 'radash'
console.log(sum([1.5, 2.5, 3.5])) // 7.5
console.log(sum([0.1, 0.2, 0.3])) // 0.6000000000000001 (floating point precision issue)
console.log(sum([1.1, 2.2, 3.3])) // 6.6
Handle Large Numbers
typescript
import { sum } from 'radash'
console.log(sum([1000000, 2000000, 3000000])) // 6000000
console.log(sum([Number.MAX_SAFE_INTEGER, 1])) // 9007199254740992
Handle Mixed Numbers
typescript
import { sum } from 'radash'
console.log(sum([1, 2.5, 3, 4.5, 5])) // 16
console.log(sum([-1, 0, 1, 2])) // 2
console.log(sum([1, -1, 2, -2])) // 0
Using with Object Arrays
typescript
import { sum } from 'radash'
const products = [
{ id: 1, name: 'Laptop', price: 999 },
{ id: 2, name: 'Phone', price: 599 },
{ id: 3, name: 'Tablet', price: 399 }
]
const prices = products.map(product => product.price)
const totalPrice = sum(prices)
console.log(totalPrice) // 1997
Calculate Average
typescript
import { sum } from 'radash'
function average(numbers: number[]): number {
if (numbers.length === 0) return 0
return sum(numbers) / numbers.length
}
console.log(average([1, 2, 3, 4, 5])) // 3
console.log(average([10, 20, 30])) // 20
console.log(average([])) // 0
Calculate Weighted Average
typescript
import { sum } from 'radash'
interface WeightedItem {
value: number
weight: number
}
function weightedAverage(items: WeightedItem[]): number {
if (items.length === 0) return 0
const totalWeight = sum(items.map(item => item.weight))
const weightedSum = sum(items.map(item => item.value * item.weight))
return totalWeight > 0 ? weightedSum / totalWeight : 0
}
const grades = [
{ value: 85, weight: 0.3 },
{ value: 90, weight: 0.3 },
{ value: 95, weight: 0.4 }
]
console.log(weightedAverage(grades)) // 90.5
Calculate Statistics
typescript
import { sum } from 'radash'
function calculateStats(numbers: number[]) {
if (numbers.length === 0) {
return { sum: 0, average: 0, min: 0, max: 0 }
}
const total = sum(numbers)
const average = total / numbers.length
const min = Math.min(...numbers)
const max = Math.max(...numbers)
return { sum: total, average, min, max }
}
const scores = [85, 92, 78, 96, 88, 90]
const stats = calculateStats(scores)
console.log(stats)
// { sum: 529, average: 88.16666666666667, min: 78, max: 96 }
Process Time Series Data
typescript
import { sum } from 'radash'
interface TimeSeriesPoint {
timestamp: number
value: number
}
function calculateTotalValue(data: TimeSeriesPoint[]): number {
const values = data.map(point => point.value)
return sum(values)
}
const timeSeriesData = [
{ timestamp: 1000, value: 10 },
{ timestamp: 2000, value: 20 },
{ timestamp: 3000, value: 30 },
{ timestamp: 4000, value: 40 }
]
const total = calculateTotalValue(timeSeriesData)
console.log(total) // 100
Calculate Financial Data
typescript
import { sum } from 'radash'
interface Transaction {
id: number
amount: number
type: 'income' | 'expense'
}
function calculateNetIncome(transactions: Transaction[]): number {
const incomes = transactions
.filter(t => t.type === 'income')
.map(t => t.amount)
const expenses = transactions
.filter(t => t.type === 'expense')
.map(t => t.amount)
const totalIncome = sum(incomes)
const totalExpenses = sum(expenses)
return totalIncome - totalExpenses
}
const transactions: Transaction[] = [
{ id: 1, amount: 1000, type: 'income' },
{ id: 2, amount: 500, type: 'expense' },
{ id: 3, amount: 200, type: 'expense' },
{ id: 4, amount: 300, type: 'income' }
]
const netIncome = calculateNetIncome(transactions)
console.log(netIncome) // 600 (1000 + 300 - 500 - 200)
Handle Nested Arrays
typescript
import { sum } from 'radash'
function sumNestedArrays(arrays: number[][]): number {
const flattened = arrays.flat()
return sum(flattened)
}
const nestedArrays = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
]
const total = sumNestedArrays(nestedArrays)
console.log(total) // 45
Calculate Percentages
typescript
import { sum } from 'radash'
function calculatePercentages(values: number[]): number[] {
const total = sum(values)
if (total === 0) return values.map(() => 0)
return values.map(value => (value / total) * 100)
}
const votes = [150, 200, 100, 50]
const percentages = calculatePercentages(votes)
console.log(percentages) // [30, 40, 20, 10]
Process Sales Data
typescript
import { sum } from 'radash'
interface Sale {
product: string
quantity: number
price: number
}
function calculateTotalSales(sales: Sale[]): number {
const revenues = sales.map(sale => sale.quantity * sale.price)
return sum(revenues)
}
const sales: Sale[] = [
{ product: 'Laptop', quantity: 2, price: 999 },
{ product: 'Phone', quantity: 3, price: 599 },
{ product: 'Tablet', quantity: 1, price: 399 }
]
const totalSales = calculateTotalSales(sales)
console.log(totalSales) // 4194 (2*999 + 3*599 + 1*399)
Notes
- Empty arrays: If the array is empty, returns 0
- Floating point precision: Floating point addition may have precision issues
- Large numbers: For very large numbers, be aware of JavaScript's number precision limits
- Performance: Time complexity is O(n), where n is the array length
- Type: Only accepts number arrays, other types will cause errors
Differences from Other Methods
reduce()
: More flexible but requires providing an accumulation functionsum()
: Concise method specifically for summation provided by radashArray.prototype.reduce((a, b) => a + b, 0)
: Same functionality but more verbose
Practical Application Scenarios
- Financial calculations: Calculate income, expenses, profits, etc.
- Statistical analysis: Calculate sums, averages, and other statistics
- Sales analysis: Calculate sales revenue, order totals, etc.
- Scoring systems: Calculate total scores, average scores, etc.
- Data aggregation: Summarize various numerical data